[物理化学 I (基礎)](全2題)

[問題1]

2004 年頃完成予定で,米・ロシア・EU・日本の共同で現在建設中の国際宇宙ステーションは高度約 $400~{\rm km}$ の大気圏(熱圏)の軌道を飛行する.この高度では酸素原子が大気の主成分であることが知られている(全体の約 85~%,残りは N_2 ,He, H_2 などである).その理由としては幾つかの要因が挙げられているが,高度 $400~{\rm km}$ での大気環境の化学熱力学を考えてみても理解される.この高度では大気圧は 5×10^{-11} 気圧,太陽があたっているときの大気温度は約 $2000~{\rm K}$ である.

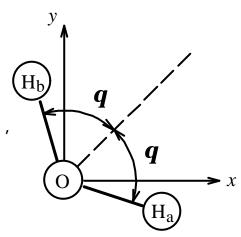
下記の表の値を用いて以下の問に答えよ、気体定数は $R = 8.314 \, \mathrm{J \, K^{-1} \, mol^{-1}}$ とする、

	$-(G^{0} - H_{0}^{0})/T \text{ (J K}^{-1} \text{ mol}^{-1})$ (T = 2000 K)	$H_{298}^{0} - H_{0}^{0} \text{ (kJ mol}^{-1}\text{)}$	$\mathbf{D}H_0^0 \text{ (kJ mol}^{-1})$
О	179.9	6.724	246.8
O_2	234.7	8.66	0
N	172.0	6.197	470.9
N_2	219.6	8.669	0

問 A $O_2 \rightarrow 2O$ および $N_2 \rightarrow 2N$ なる反応に対する 2000 K における $D(G^0 - H_0^0)/T$, $D(G^0 - H_0^0)$ を求め , DG^0 の値を $J \mod^{-1}$ で示せ .

問 B $2000~{
m K}$ における ${
m O}_2$ \Longrightarrow $2{
m O},~{
m N}_2$ \Longrightarrow $2{
m N}$ なる反応の圧平衡定数 $K_{_p}$ を求めよ.

問 C この高度での O 原子と O_2 分子, N 原子と N_2 分子の数の比はいくらか.


問 D 何故 O 原子が主成分になるかを上の結果から考察せよ.

「問題2]

水がなぜ折れ曲がった構造をとるのか,簡単な分 子軌道モデルを用いて考察しよう.

酸素原子(O) ならびに 2 つの水素原子(H_a , H_b)の位置関係が図に示した通りであるとする.ここでは、酸素の 2p 軌道と水素の 1s 軌道のみが結合に関与すると仮定する.

簡潔に計算過程も示して,以下の問に答えよ.

- 問 A 3個ある酸素の 2p 軌道 (p_x, p_y, p_z) のうち, p_z は水素の 1s 軌道 (s_a, s_b) との結合 に関与しない.その理由を,これらの軌道の概形を図示して説明せよ.
- 問 B 下記のような, p_x , p_y , s_a , s_b の線形結合 \mathbf{y}_i (i = 1, 2, 3, 4)を考える.

$$\mathbf{y}_1 = \frac{1}{\sqrt{2}}(p_x + p_y), \ \mathbf{y}_2 = \frac{1}{\sqrt{2}}(p_x - p_y), \ \mathbf{y}_3 = \frac{1}{\sqrt{2}}(s_a + s_b), \ \mathbf{y}_4 = \frac{1}{\sqrt{2}}(s_a - s_b)$$

これらを基底とする永年方程式は以下のとおりである.

$$\begin{vmatrix} \mathbf{a}_{1} - E & \mathbf{b}_{12} & \mathbf{b}_{13} & \mathbf{b}_{14} \\ \mathbf{b}_{12} & \mathbf{a}_{2} - E & \mathbf{b}_{23} & \mathbf{b}_{24} \\ \mathbf{b}_{13} & \mathbf{b}_{23} & \mathbf{a}_{3} - E & \mathbf{b}_{34} \\ \mathbf{b}_{14} & \mathbf{b}_{24} & \mathbf{b}_{34} & \mathbf{a}_{4} - E \end{vmatrix} = 0$$

ここで,E はエネルギー固有値, \mathbf{a}_i は i 番目の基底に関するクーロン積分 $\langle \mathbf{y}_i|\hat{H}|\mathbf{y}_i\rangle$, \mathbf{b}_j は i,j 番目の基底間の共鳴積分 $\langle \mathbf{y}_i|\hat{H}|\mathbf{y}_j\rangle$ である.ただし, \hat{H} は水分子中の電子に関するハミルトニアンを意味する.

酸素の 2p 軌道ならびに水素の 1s 軌道に関するクーロン積分を \mathbf{a}_p と \mathbf{a}_s を示せ.また, \mathbf{b}_{ij} を p_x , p_y , s_a , s_b に関する共鳴積分 $\mathbf{b}_{xa} = \langle p_x | \hat{H} | s_a \rangle$ などで表せ.ただし, \mathbf{b}_{xy} は本来ゼロであり, \mathbf{b}_{ab} は無視でき

るとする. さらに,分子の対称性から $\boldsymbol{b}_{xa} = \boldsymbol{b}_{yb}$ かつ $\boldsymbol{b}_{xb} = \boldsymbol{b}_{ya}$ である.

- 問 C 永年方程式を解くことによって,エネルギー固有値を求めよ.
- 問 D 簡単な計算によると $\boldsymbol{b}_{xa} + \boldsymbol{b}_{xb} = \boldsymbol{b}_{yb} + \boldsymbol{b}_{ya} = \boldsymbol{b}\cos\boldsymbol{q}$ $\boldsymbol{b}_{xa} \boldsymbol{b}_{yb} = \boldsymbol{b}_{yb} \boldsymbol{b}_{ya} = \boldsymbol{b}\sin\boldsymbol{q}$ となる.ここで \boldsymbol{b} は OH 間距離のみの関数である.問 C で求めた固有値の内でエネルギーの低い 2 つが,角度 \boldsymbol{q} に対してどのように変化するかを図示せよ.
- 問 E 全系のエネルギーを計算し、その極小値を与える角度 gを求めよ、