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Research of chemical reactions in supercritical fluids
Okitsugu Kajimoto

Okitsugu Kajimoto was born in 1942. He received his Bachelor of Science in 1965 and Master of Engineering in 1967 from
Kyoto University and then completed his Ph.D. at Osaka University in 1972 while he was appointed as a research associate
at School of Engineering Science, Osaka University (1967-1881). In 1981, he moved to the University of Tokyo as Associated
Professor and started the study of intracluster reactions using supersonic jet technique. In 1991, he joined Graduate School
of Science, Kyoto University as Professor of Chemistry. His current interests lie in the reactions and energy transfer in
supercritical fluids. He was named the project head of 'Reactions in Supercritical Fluids' sponsored by Japan Science and
Technology Corporation (1997-2002). He was awarded Japan Photochemical Society Prize in 1990 and Japan Chemical
Society for Creative Work Prize in 1993.

(1) Decomposition of C:HsNO: in supercritical water detected with a flow NMR probe

We have developed a high-temperature and high-pressure flow NMR probe for in situ observation
of reacting species and for the determination of rate constants of reactions in supercritical water
(SCW). By mixing hot SCW with aqueous sample solution within the superconducting magnet,
SCW of specific temperatures and densities can be produced instantaneously, which enables the
determination of rate constants. In the previous report, we demonstrated the performance of this
NMR probe by determining the rate constants of relatively quick reactions like Claisen rearrangement.
Recently, we applied this experimental technique to elucidate the mechanism of the decomposition of
C:HsNO: whose derivatives are highly explosive and have biological activity and hence efficient waste
treatment using SCW is considered to be promising. Fig. 1 shows the NMR signal of the products
in a batch experiment of the CoHsNO2 decomposition in SCW. In addition to the major procucts
(CH3;CHO and CH3CN), the secondary or independent primary products (CH;:COOH, CH3;CONHa,
CH;OH) were detected. In the in-situ experiment, although large proton signal of water hid the
CH:CN peak, we additionally detected CH.=CH. and CH4 as shown in Fig 2. Fig. 2 also represents
the time dependence of the reactant/product concentration. The temporal decrease of the C2HsNO»
concentration follows the 1st-order decay as presented in Fig 3. The evaluated rate constant at 409°C
and 0.49 g/cm’ water density was 1.05 X 10" s™. This rate constant means that the reaction almost
completes within 20 s and ordinary batch methods cannot pursue the reaction.

(2) Observation of radical reactions in supercritical fluids

The role of radical reactions in SCW is not clear yet and still remains to be examined. As a
basis for the detection of OH radicals in SCW, we studied the behavior of OH radicals in water of
ambient temperature and pressure. OH radicals were generated by photolyzing water at 193 nm and
the transient behavior of the radical was followed with the absorption at 250 nm. This absorption is
assigned as the electron-transfer transition from OH to H.O and extends from 200 to 270 nm. Other
relevant radicals such as HO, and Oz also absorb light at 250 nm and therefore the analysis should
take the absorption of these species into account. Therefore, we solved numerically the rate equations
including these radicals and ions and simulated the temporal absorption curve using the extinction
coefficients of these species at 250 nm. The major reactions controlling the system are:

H.O —-OH+H H20; — OH + OH

OH + OH — Hx0: H+ OH — H.O

OH + H:0. — HO: + H.0 HO:; + HO; = H20: + O2
HO,—H + Oy H' + O, — HO..

Figure 4 shows the time-dependent absorption at 250 nm observed for the photolysis of pure



H2O. At least, two decays of different time interval are recognized. The short time decay within 10us
is assigned to be the loss of OH radicals due to the recombination and the reaction with H2O.. The
long-term decay is originated from the decay of the HO: radical equilibrated with H" and O>". Figure
5 represents the short-time region of the temporal absorption which corresponds to the decay of OH
radicals. From the observed decay curve and the simulation we determined the rate constant of OH
recombination to be 3 X 10" dm’mols”, which indicates that the reaction is completely diffusion
controlled. We are planning to observe the same reaction with elevated temperatures and pressures.

(3) Solvent-assisted intramolecular vibrational energy redistribution (IVR) in sc fluids

We have extended the femto second experiment of IVR in sc fluids in both experiment at elevated
temperatures and also in theoretical analysis. We interpreted the increasing IVR rate within a hot
CH:l> molecule with increasing density of sc Xe as the result of enhanced small-fractional energy
dissipation by the increasing collision with Xe molecules. Such minute energy dissipation helps the
energy matching among the vibrational energy-level manifold of a CH:l> molecule and facilitates the
resonance energy transfer.

Selected Publications
- Presentation & Lectures
1. 0. Kajimoto, “Reaction of O ('D) atoms and intramolecular vibrational energy relaxation” , 21st
Symposium on chemical kinetics and dynamics, 2005.6.2, Osaka, Japan (Invited)
2. 0. Kajimoto, “Elementary processes in supercritical fulids”, Molecular Engineering Seminar,
2005.10.19, Kyoto, Japan (Invited)
3. 0. Kajimoto*, M. Mukaide, F. Amita, M. Nishikawa, K. Takegoshi, “Determination of rate constants
with a flow-type high-temperature and high-pressure NMR probe” , 2005.12.16, Honolulu, United
States (Invited)
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1. T. Arita and O. Kajimoto, “Effects of Local Density Enhancement of the Diffusion-Controlled
Reactions in Supercritical Fluid: Comparison Between the Ionic and Radical Species” , J. Phys. Chem.
A, (in press).

2. N. Kometani, Y. Hoshihara, Y. Yonezawa, O. Kajimoto, K. Hara, N. Ito, “Rotational Dynamics of
Coumarin 153 in Supercritical Fluoroform” , J. Phys. Chem. A., 108 (44), 9479-9483(2004).
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(1) BMHER/T « v 7 - 7—O>FEXOBERNEE
{LFOMREFRTLHERIZY 2L —F 4 H—FEKA(SE) 74 Fv 7 -7 —ar 5
(DCE) Th 2., i->T. N6 OFEAZEENZZETRIIBO TR Z LBEFLPER
BT LEMOBETH Y. BRI OERANCMD CTEELRZBEWE D, T4 13 EME
BOBERIZE T %2 —#HOEN 5, ICI (Iterative configuration or complement interaction) % %
REL, EEREBIBEHBERD L)7EEL T Lz, 7z, NIV =7 —a A
YEFZAK § % singularity D@ X SE & &1l 7s scaled > 2L —F 4 > H— 2 (SSE) #8%
L CR L. SE OffthfR%E R % Z & WH[FEL 72 o 7z,

fth 77 ¢, MXERY DCE 0% R % & E1x, SEIZFR00bhW LN HBORMENEE 5,
CNIBETROEFEED D, &EH{EWL DCE DB FIREDMRITIHE DK DCE ORIZI3755 7,
WHW % Ritz B DOZE 3 FEHE N7z Sz, LA L, Ritztype DEZFEEAZEET 5 1 DD
BN =T OFHANH %, B15 Inverse DCE D EJEE IREEDRIIR DB WL 2D,
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BB & MM SR oD B 753k, JEMNTER O SE 721 T7 <. MHNTERH DCE Z fi# < &1 HIEH
CERTHhLZENRSNT,

Table 1 Relativistic ICI results for H-like and He-like atoms.

n H-like atoms * n He-like atoms (Inverse) °

M Energy (H) Energy (Fe25+) M Energy (He)  Energy (Th88+)
0 2 -0.375 033 696 -286. 305 491 0 3 -2.75008 563 -9166. 575 433
1 6 -0.493 381 703 -336. 985 794 1 12 -2.88771 973  -9166. 809 415
2 12 -0.499 822 155 -340. 983 740 2 38 -2.90307277  -9166. 858 084
4 30 -0.500 006 642 -341. 097 830 5 482  -290385116 -9166. 903 050
5 42 -0.500 006 657 -341. 097 839 6 852 -2.90385405 -9166.907 227

© Bxact 0500006657  -341.097839  Ref' 20903857  -9166.9272

“Initial guess, g function: ¢, = exp(-1.5r)- Angular > g=r"""

b
s P, =5 ' T exp(~Zr ) exp(=Zr,) - Angular

g=l+r+n+n, ‘A Kolakowska, J.Phys.B.:At.Mol.Opt.Phys., 30, 2773 1997. 4A Kolakowska, J.D.Talman,

K.Aashamar, Phys.Rev.A, 53, 168, 1996.
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_ Table 2 Excited states of Chemo- y | U=
! [::,‘-",'Mm,...t.. i sensor: N, N-dimethyl-9 :
: Anthracene methanamine. '

d = ot |
States SACCI Exptl. 2 TodpdMEL R I
j - AE(eV) f  Character AE(eV) I it

Absorption 3 | i |
S, 3.6 0.1323 H-L 3.37 i AL A R &
Emission "

S, 2.8 0.1307 H-L 2.97

| SACCI

| TE stmie =R i S1] s

| FT Oligomer _,;fTTITHfhﬁ I‘lu

Vierairad fimex; S0

Fig. 1 Absorption spectra of Fluorene-Thiophene (FT): UV and
SAC-CI with including thermal distribution. Molecular ~ Fig. 2 Cls satellite and vibrational
structure of FT Oligomer is spectra of CO.

(3) Rhodobactor (Rb.) sphaeroides St & IS/ ODEIRIRE EBFBEA H=X L
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Fig. 3 (a) Chromophores in the photosynthetic reaction center of Rb. sphaeroides. (b) Electronic
factor for the electron transfer in the reaction center of Rb. sphaeroides (in cm™ unit).

129



130

(2.5kcal/mol) DFEE CHERMRIREESA 5 2 EIZRINL T, £, BEFBEOREEIRME:E
T 572912, SAC-CL ) B % F O COEEERI HI 3 2 BFINE T [He* 5L 72 (K3 (b)) .
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T AMIDR 20 fEREL, THIZ XV RBEBEIREZFHTE S, ZORFEEZMEHIILIEZ A, P-B
MO EE#EEA A, B-branch TIFIEZEL WA, B-H [ 0 #E#EE B-branch O 75 %9 1A 54 <. Rps. viridis
LAFRIZETHRTFORESHEERICHK TN o7, £, EMESEEGOETHNET
MIEBITNSMASN TV A LIC XV ETFBHONEEEFHTES (X3 (b) ) . ZOREFEE
LCTIREMBEMEEGDOEOT 77 2 —HEDEMAMNEETH L, I, BTIZI0, lIHTH
% AFI)VEA hyperconjugation |2 &K D EFHIKFIZRKE SFHLEL T0WaZ AL 75‘ Iz fct 27,

Exact Wave Function, Theoretical Fine Spectroscopy, and Bio-molecular Photochemistry

Hiroshi Nakatsuji

Born in 1943. He received his Ph.D. degree from Kyoto University. He was a research associate (department of Hydrocarbon
Chemistry), an associate professor (division of Molecular Engineering), and a professor in the department of Synthetic Chemistry,
Faculty of Engineering, Kyoto University (1990). Now he has been a professor in the department of Synthetic Chemistry and Biological
Chemistry, Graduate School of Engineering, Kyoto University (1994-). He was also a visiting professor in Tokyo Institute of Technology
(1992-1993) and Tokyo University (1996-1998). He has been a vice-director (2002-2003) and a director (2004-) of Fukui Institute
for Fundamental Chemistry. He has been a member of the International Academy of Quantum Molecular Science (1993-), a Board of
Director, International Society of Theoretical Chemical Physics (1994-), and an editor of Journal of Computational Chemistry (2000-).

(1) Analytically Solving the Relativistic Dirac-Coulomb Equation: Solving the Schrodinger and
Dirac-Coulomb equations (SE & DCE) is a central theme of the theoretical chemistry because of
its scientific and practical importance. In our series of studies, we established iterative complement
(or configuration) interaction (ICI) method for calculating the exact wave functions. To solve the
singularity problem that arises from the Coulomb interaction in Hamiltonian, we introduced scaled
Schrédinger equation (SSE) and established a general method of solving the Schrédinger equation.

For solving the relativistic DCE, an obstacle that often appears in the relativistic field is the so-
called variational collapse. Since the lowest electronic state of the DCE is not the lowest state of this
equation, the so-called Ritz-type principle does not hold. For recovering the Ritz-type property, we
introduced the inverse Hamiltonian. Another method of avoiding the variational collapse is to ensure
balancing condition on the basis functions. In our ICI formalism, the balancing is automatically done,
and we call it ICI balance. The results of the test applications are satisfactory enough to show a high
potentiality of the proposed method also for the relativistic case.

(2) SAC-CI studies of molecular fluorescence and fine spectroscopy of CO: The SAC-CI method
describes the various electronic states including the excited, ionized, electron-attached, and high-spin
states in high accuracy. We performed theoretical fine spectroscopy for the excitation and ionization
spectra with SAC-CI method; both valence and inner-shell electronic processes are studied in details.
(1) The photoabsoprtion and emission spectra of the organic light-emitting diode, fluorine-thiophene
oligomer, were studied. Theoretical spectra including thermal distribution of the rotational conformers
successfully simulated the experimental spectra. (2) The photochemistry of some bio-chemosensor
molecules was studied. The effect of surrounding protein and solvent will be examined in details. (3)
The vibrational spectra of the Cls satellite states observed at unprecedented energy resolution were



studied. The SAC-CI potential energy curves of these shake-up states and the Franck-Condon analysis
well reproduced the vibrational spectra and predicted the precise assignments.

(3) Excited States and Electron Transfer Mechanism in the Photosynthetic Reaction Center of
Rhodobactor (Rb.) sphaeroides: The SAC-CI calculations clarified the natures of the excited states
and the electron transfer (ET) processes in the photosynthetic reaction center of Rb sphaeroides. The
absorption spectrum was assigned with the averaged error of 0.11 eV. The electronic factors calculated
from the SAC-CI wave functions showed that the unidirectional electron transfer originates from the
ET step from bacteriochlorophyll (B) to bacteriopheophytin (H), not from the special pair (P) to B as
in the Rhodopseudomonas viridis reported previously. The electronic factor of the A-branch ET is 20
times larger than that of the B-branch. An analysis clarified that the unidirectionality originates from
the inter-chromophore distances. We also found that the hyperconjugations of the methyl groups with
the 7t electrons of the chromophores have primary contributions to the electronic factor.
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2HCHO + H,O — CH3;OH + HCOOH (1)

HCHO + HCOOH — CH;0H + CO» (2)
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HCHO + HCOOH — HOCH>COOH (with HCI) (3)
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1 s-trioxane 0.1 M
BB s-trioxane 0.1 M,
HCOOH 2.0 M -
s-trioxane 0.1 M, HC10.6 M |
M s-trioxane 0.1 M, HC106 M [

— HCOOH 5.0 M
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(1) A New High-Temperature Multinuclear-Magnetic-Resonance Probe and the Self-Diffusion
of Light and Heavy Water in Sub- and Supercritical Conditions: Recently, super- and subcritical
water attracts much attention as a novel and clean solvent. Various kinds of new organic reactions have
been found to be induced in super- and subcritical water. In order to elucidate the dynamics of hot water
including supercritical, a high-resolution nuclear magnetic resonance (NMR) probe (500 MHz for 'H)
has been developed for multinuclear pulsed field gradient spin-echo (PGSE) diffusion measurements at
high temperatures up to 400 °C. The convection effect on the self-diffusion measurement is minimized
by achieving the homogeneous temperature distributions of *1 and £2 °C, respectively, at 250 and 400
°C. The high temperature homogeneity is attained by using the solid-state heating system composed
of a ceramic (AIN) with high thermal conductivity comparable with that of metal aluminium. The
self-diffusion coefficients D for light (‘H.0) and heavy (*H.O) water are distinguishably measured at
subcritical temperatures of 30-350 °C with intervals of 10-25 °C on the liquid-vapor coexisting curve and
at a supercritical temperature of 400 °C as a function of water density between 0.071 and 0.251 g/cm’.
The D value obtained for 'H-O is 10%-20% smaller than those previously reported because of the absence
of the convection effect. At 400 °C, the D value for 'HO is increased by a factor of 3.7 as the water
density is reduced from 0.251 to 0.071 g/cm3. Roughly speaking, the observed self-diffusion coefficient
of supercritical water appears, although not exactly, inversely proportional to the density or the number
of hydrogen bonds in the low-density region covered in this study. The isotope ratio D('H0)/D(*H,0)
decreases from 1.23 to ~1.0 as the temperature increases from 30 to 400 °C. Since *H-O is considered
to be more structured than 'H»O, the isotope effect is interesting to discuss in terms of intermolecular
interaction, typically hydrogen bonding, apart from the density and the temperature dependences. It
is of great interest to investigate the effect of weakened and distorted hydrogen bonding on the self-
diffusion for super- and subcritical water from the classical and quantum mechanical points of view. The
linear hydrodynamic relationship between the self-diffusion coefficient divided by the temperature and
the inverse viscosity does not hold. The effective hydrodynamic radius R of water is not constant but
increases with the temperature elevation in subcritical water. The increase of the R can be interpreted as
an indication of the strong effect of the short-range attractions between the solute (water)-solvent (water).

(2) Hydrothermal Carbon-Carbon Bond Formation and Disproportionations of C1 Aldehydes:
Formaldehyde and Formic Acid: Hydrothermal reaction pathways and kinetics of C1 (carbon-
one) aldehydes, formaldehyde (HCHO) and formic acid (HCOOH = HOCHO), are studied at 225 °C
without and with hydrochloric acid (HCI) up to 0.6 M (mol dm™). Reactions unveiled are: the self-
disproportionation forming methanol and formic acid, a redox reaction between two formaldehydes (eq 1)
2HCHO + H.O — CH;0H + HCOOH, (1
the cross-disproportionation forming methanol and carbonic acid, a redox reaction between



formaldehyde and formic acid (eq 2)

HCHO + HCOOH — CH;OH + COa, ()
and the acid-catalyzed C-C bond formation (eq 3) producing glycolic acid (HOCH.COOH) as a
precursor of the simplest amino acid, glycine

HCHO + HCOOH — HOCH2COOH (with HCI) 3)
This is a new chemical evolution step from C1 aldehydes, formaldehyde and formic acid without any
organic solvent or metal catalysts. Since the amination of glycolic acid generates glycine, this reaction
may be a step toward the origin of life in the primitive earth. Further, the generality of eq 3 is shown
by treating acetaldehyde and formic acid to produce lactic acid. The disproportionations (eqs 1 and 2)
are found to proceed even without base catalysts unlike the classical Cannizzaro reaction, the base-
catalyzed disproportionation in ambient condition. The cross-disproportionation in neutral condition
should be noted as a new method for alcohol production. Simple hydrothermal treatment with formic
acid reduces aldehyde into alcohol. From the kinetic analysis, the rate constants of the self- and cross-
disproportionations and the C-C bond formation are determined. Acid is found to catalyze the self-
disproportionation (eq 1) and the C-C bond formation (eq 3), but to retard the cross-disproportionation
(eq 2). The rate constants of non-catalyzed and acid/base-catalyzed paths for the reactions (eqs 1, 2
and 3) are given additively as 2 X 10*+2 X 10° [H'], 10* + 10’ [OH], and 2 X 107 [H']M" s,
respectively; the concentrations of proton [H'] and hydroxide ion [OH'] are expressed in M. The rate
constant of the noncatalytic (neutral) cross-disproportionation is found to be one order of magnitude
larger than that of the self-disproportionation, which indicates stronger reducing ability of formic acid
than that of formaldehyde. In hot water, the undissociated form of water is found to induce both self-
and cross-disproportionations. Based on the kinetic analysis, the reaction pathways are controlled
in order to make the glycolic acid and methanol productions dominant by tuning the concentrations
of formaldehyde, formic acid, and HCI. The conversion to glycolic acid reaches ~ 90% when
formaldehyde, HCI, and formic acid are mixed in the ratio of 1:2:17. The conversion of formaldehyde
to methanol reaches ~ 80% when formic acid is added in excess to formaldehyde.
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Weakly-bound halogen complex relevant to atmospheric chemistry

Masahiro Kawasaki
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(1) Equilibrium Constant of the Reaction of Cl with O: in the Formation of ClIOO and Rate
constant of the Reaction of ClIOO with NO

The equilibrium constant for the formation of CIOO from CI and O: is experimentally measured
at 212-245 K using cavity ring-down spectroscopy. A van't Hoff plot analysis yields AH, =4.8 = 1.5
kcal mol”. The CI-OO bond dissociation energy is determined to be 4.67 =+ 0.06 kcal mol-1 from the
present and previously reported temperature dependence of the equilibrium constant by the third-law
analysis utilizing our recent accurate rotational spectroscopic data. High level ab initio calculations
using MRSDCI+Q with the complete basis set extrapolation are also performed. The present ab initio
calculations yield the C1-OO bond dissociation energy to be 4.53 kcal mol™.

Cavity ring-down spectroscopy was used to study the reaction of CIOO with NO in 50-150 Torr
total pressure of O2/N2 diluent at 205-243 K. Within the experimental uncertainties, there was no
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discernable effect of temperature or pressure on the reaction kinetics. A value of k£ (CIOO + NO) =
(4.5+0.8) x 10" cm’ molecule” s at 213 K was determined. The yield of NO; in the CIOO + NO
reaction was 0.180.02 at 213 K and 0.15+0.02 at 223 K.

(2) Direct Observation of Adduct Formation of Alkyl- and Aromatic lodides with Cl Atoms

The reactions of Cl atoms with RI (R = n-Cs;H», n-CsHo, cyclo-CsHii, CéHs, CeFs, and p-CH3CsHay)
have been studied using cavity ring-down spectroscopy at a temperature range of 233 - 313 K, and at
100 Torr total pressure of N2 diluent. Visible absorption spectra of the RI-Cl adducts were recorded
at 440-520 nm at 263 K. The yields of the adducts were found to be temperature dependent. There
was no discernable reaction of the adducts in the presence of 100 Torr of O, at 263 K. Theoretical
calculations were performed for CsHsI-Cl and CsHsI-Cl for quantitative explanation of the absorption
spectra and the strength of the I-Cl bonds in the charge transfer complexes. Evidence for the adduct
formation following the reaction of Cl with C¢HsBr was sought but not found at 440 nm and 520 nm.

The reactions of CI atoms with XCH.I (X = H, CHs, Cl, Br, 1,) have been studied using cavity
ring-down spectroscopy in 25-125 Torr total pressure of N diluent at 250 K. Formation of the XCHoI-
Cl adduct is the dominant channel in all reactions. The visible absorption spectrum of the XCHal-
Cl adduct was recorded at 405-632 nm. Absorption cross sections at 435 nm are (in units of 10™* cm®
molecule-1): 12 for CHsl, 21 for CH3;CHal, 3.7 for CHICI, 7.1 for CH:IBr, and 3.7 for CH:l.. Rate
constants for reaction of Cl with CH;I were determined from rise profiles of the CH3I-Cl adduct. k£ (Cl
+ CH:]) increases from (0.4 + 0.1) x10™" at 25 Torr to (2.0+0.3) x10™"" cm® molecule's™ at 125 Torr
of N2 diluent. There is no discernable reaction of the CH;I-Cl adduct with 5-10 Torr of O.. Evidence
for the formation of an adduct following reaction of CI atoms with CFsl and CH:Br was sought but not
found. Absorption attributable to formation of the XCH2I-CI adduct following reaction of Cl atoms
with XCHzI (X = H, CHs, Br, I) was measured as a function of temperature over the range 250-320 K.
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Reactions of Transition-metal Compopunds with Complexed Electronic
Structure. Theoretical Study.

Shigeyoshi Sakaki

Born in 1946. He received his Ph.D. degree from Kyoto University. He joined the faculty of engineering, Kumamoto
Unviersity in 1975, and became associate professor at 1982 and professor at 1990 in Kumamoto University. He spent one
year as CNRS research associate in Strasbourg in France (1984-1985) and visiting professor of Institute for Molecular
Science (1990-1991). He moved toKyushu University on 2001 and spent one year in the Institute for Fundamental Organic
Chemistry as a professor. Now he has been a professor in the Department of Molecular Engineering, Graduate School of
Engineering, Kyoto University since 2002. He has been devoted in the theoretical studies of transition metal complexes, their
geometries, bonding nature, and reaction behavior.

(1) Localization/delocalization of Electronic Structure of Creutz-Taube type Mixed Valence

Complexes

Creutz-Taube type mixed valence ransition-metal complexes have attracted a lot of interests in
both fundamental and applied chemistries, because of its potential ability for molecular device. One
important feature is whether its electronic structure is localized or not. In this theoretical work, the
electronic structure of [M(NH:)s].>* (L) (M=Ru or Os; L=pyradine (Pyra) or 4, 4 -bipyridine (Bpy))
was theoretically investigated. Interestingly, only [Ru(NHs)s]>"" (Bpy) has localized electronic
structure in water, while in gas-phase, it has delocarized electronic structure. The reason why this
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complex has localized electronic structure was discussed in terms of the d orbital energy and d orbital
expansion. Significant difference is observed between Pyra and Bpy complexes. This is because
the metal-metal distance is much different between these complexes. [Ru(NHs)s].”"(Bpy) exhibits
somewhat smaller overlap integral than the Os analogue. As a result, the Os complex has delocarized
electronic state but the Ru analogue has localized electronic state.

(2) Catalytic Reactions by Transition-metal Complexes. Ru-Catalyzed Hydrogenation of Carbon

Dioxide.

Tranistion-metal-catalyzed hydrogenation of carbon dioxide is one of the challenging and
interesting catalytic reactions in coordination chemistry, catalytic chemistry, and also theoretical
chemistry, because the activation of inert carbon dioxide is involved in the reaction. In this work, Ru-
catalyzed hydrogenation of carbon dioxide was theoretically investigated with the DFT and MP2 to
MP4 (SDQ) methods. In the absence of water molecule, this reaction takes place through insertion
of carbon dioxide into the Ru-H bond, isomerization of Ru- 7'-formate complex, metathesis with
dihydrogen molecule. The rate-determining step is the insertion of carbon dioxide of which activation
barrier is 16.1 kcal/mol (MP4 (SDQ)). In the presence of water molecule, on the other hand, not the
insertion of carbon dioxide but the nucleophilic attack of hydride to carbon dioxide takes place with
much smaller activation barrier, to afford the similar Ru-n'-formate complex. After this nucleophilic
attack, the reaction proceeds through isomerization of the Ru- 7'-formate complex followed by the
metathesis with dihydrogen molecule.

(3) A new method to reconstruct three-dimensional spatial distribution function from radial

distribution function in salvation structure

Three-dimensional spatial distribution function SDF of solvent is a fundamental quantity for
analysis of solvation. However, its calculation has been very limited because long computational time
is required. We here developed a novel and robust method to construct approximated SDFs of solvent
sites from radial distribution functions. In this method, the expansion of SDFs in real solid harmonics
around atoms of solute leads to a linear equation, from which SDFs are evaluated with reasonable
computational time. This method is applied to the analysis of the solvation structure of liquid water,
as an example. The successful results clearly show that this method is very powerful to investigate
solvation structure.
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Theoretical studies of chemical reactions
Shigeki Kato

Born in 1949. He received his Ph.D. degree from Kyoto University. He was a research associate in Institute for Molecular
Science at Okazaki (1977-1984), a research associate and lecturer in Faculty of General Education, Nagoya University
(1984-1986), an associate professor in Faculty of Arts and Science, University of Tokyo (1986-1990) and a professor in
Department of Chemistry, Faculty of Science, Kyoto University (1990-1994). Now he has been a professor in Department
of Chemistry, Graduate School of Science, Kyoto University (1994-). He got the Japan IBM Prize for science. He has been
devoted in the development of theoretical methods for studying chemical reaction mechanisms and dynamics.

(1) Electronic relaxation dynamics of Ni**-ion aqueous solution: Electronic relaxation dynamics
of Ni*"-ion aqueous solution was studied using molecular dynamics (MD) simulations with the
model-effective Hamiltonian. The nonadiabatic transition rates from the first three excited states to
the ground state were evaluated by the golden rule formula with the adiabatic MD simulations. The
MD calculations with the fewest-switch surface-hopping method were also carried out to obtain a
more detail description of the electronic relation dynamics among excited states. We found that the
transitions among the three excited states are very fast, in the order of 10 fs, while the transition to
the ground state is slow, about 800 ps. These results are consistent with the experiments. In both
simulation, we explored the effects of the quantum decoherence, where the decoherence functions
were derived by the energy-gap dynamics with the displaced harmonic-oscillator model.

(2) Intramolecular charge-transfer state formation of 4-(N,N-dimethylamino)benzonitrile
in acetonitrile solution: Intramolecular charge-transfer (ICT) state formation of 4-(N,N-
dimethylamino)benzonitrile in acetonitrile solution was studied by RISM-SCF method. Geometry
optimizations were performed for each electronic state in solution with CASSCF wave functions.
Dynamic electron correlation effects were taken into account by using MCQDPT theory. Two-
dimensional free energy surfaces were constructed as the functions of the twisting and wagging angles
of the dimethylamino group for the ground and locally excited (LE) states. The calculated absorption
and fluorescence energies were in good agreement with experiments. The validity of the twisted ICT
(TICT) model was confirmed in explaining the dual fluorescence, and the possibility of the planar
ICT model was ruled out. To examine the mechanism of the TICT state formation, a “crossing” seam
between the LE and CT state surfaces was determined. The inversion of two electronic states occurred
at a relatively small twisting angle. The effect of solvent reorganization was also examined. It was
concluded that the intramolecular twisting motion is more important than the solvent flictuation for the
TICT state formation, because the energy difference between the two states is minimally dependent on
the solvent configuration.



(3) Electronic and spin structure of [Fe2S2]**" cluster: Electronic structures of [Fe>S> (SCH3)s]™
in DMSO solution are calculated using RISM-CASSCF/MRMP2 method. For the reduced state,
we obtained both the low spin Fe’'Fe’* localized and high spin Fe’*'Fe**" delocalized forms, which
were very close in energy. The spin interaction constants obtained from the energies of states with
various spin multiplicities were in good agreement with available experimental estimates both for
the oxidized and for the reduced states. The dynamic electron correlation effect was found to be
important in estimating the spin interaction bwtween the Fe ions. The redox potentials were calculated
to be 2.87 and 2.78 eV for the localized and delocalized reduced states, respectively, which are close
to the experimental values. We devised a simple model for calculating the free energy curves of the
reduction process based on the RISM-SCF theory. The activation barrier height was calculated to be
7.4 kcal/mol at the equilibrium geometry of oxidized state, indicating that the reduction reaction will
occur efficiently in DMSO solvent. The effect of solvent fluctuation on the free energy profiles was
discussed on the basis of the present calculations.

(4) Lowest free-energy point on conical intersection in polar solvent: We proposed a theoretical
method for locating the lowest free-energy points on conical intersections (Cis) is solution using RISM-
SCF theory. Based on the linear-response theory, the nonequilibrium free energy was defined as a quadratic
function of solvent corrdinates, the parameters in which are directly obtained by ab initio RISM-SCF
calculations. This free energy was easily incorporated in to an efficient CI optimization procedure in the
gas phase. The present method was applied to the cis-trans isomerization of ethylene and methaneiminium
cation (CHNH>") in polar solvents.. We showed that the geometries and energies of Cis are largely affected
by the solute-solvent electrostatic interaction. In particular, the hydrogen migration of ethylene observed at
Cis in the gas phase disappered in protic solvents due to the large stabilization of the zwitterionic state.
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Time-resolved energy and structure change measurements during protein
reactions
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(1) Protein refolding dynamics detected by the time-dependent diffusion coefficient: Folding
dynamics of reduced cytochrome c triggered by the laser induced reduction method is investigated
from a view point of the intermolecular interaction change. Change of the diffusion coefficient of Cyt
¢ during the refolding process is traced in time domain from the unfolded value to the native value
continuously at various denaturant concentrations and temperatures. In the temperature range of 288
K-308 K and GdnHCI concentration range of 2.5 M- 4.25 M (Fig.1), the diffusion change can be
analyzed well by the two state model consistently. It was found that the m*-value and the activation
energy of the transition state from the unfolded state for the hydrogen bonding network change are
surprisingly similar to that for the local structural change around the heme group monitored by the
fluorescence quenching experiment. This agreement suggests the existence of common or similar
fundamental dynamics during protein folding.

(2) Conformational change of spectrally silent dynamics of Phototropin: Conformational dynamics of
LOV2 domain of phototropin is studied by the pulsed laser induced transient grating (TG) technique. The
TG signal of LOV2 without the linker part to the kinase domain exhibits the thermal grating signal and a



weak population grating by the adduct formation. After that change, no significant conformational change
was observed. On the other hand, the signal of LOV2 with the linker part to the kinase domain clearly
shows very different diffusion coefficients between the original and the adduct species (Fig.2). The large
difference indicates significant global conformational change of the protein moiety upon the adduct
formation. More interestingly, the diffusion coefficient is found to be time dependent in the observation
time range. This dynamics representing the global conformational change is a clear indication of a
spectral silent intermediate between the excited triplet state and the signaling product. From the temporal
profile analysis of the signal, the rate of the conformational change is determined to be 2 ms (Fig.3).

(3) Ultrafast heating after laser focusing inside a glass: The temporal and spatial developments of
the refractive index change in a focal region of a femtosecond laser pulse inside a soda-lime glass is
investigated by the transient lens (TrL) method with a time resolution of subpicosecond. Based on the
pressure wave propagation and the phase retrieval method, the temporal evolution of the refractive
index distribution inside a glass is obtained from the probe beam deformation (TrL image) at various
delay times between the pump and probe pulses (Fig.4). Two phases of the refractive index increase
at the laser focal region were observed in a range of 20-100 ps and 500-700 ps, which may cause the
permanent refractive index increase in the laser focal region inside a glass.
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In this project, we have been investigating chemical and physical processes of extremely cold
molecules. We are developing new techniques for making cold molecules, which include doping
molecules in solid hydrogen, solid He and superfluid He nano-droplets. High-resolution spectroscopy
of molecules in these quantum condensed phases allows us to investigate physical and chemical
properties of cold molecules in great detail. In addition, we are making observation of molecules
in interstellar space in order to investigate chemical evolution of molecules under extremely low
temperature and high vacuum.

(1) High-resolution spectroscopy of solid hydrogen and molecules embedded in solid hydrogen:
Solid hydrogen, known as a quantum crystal, shows extremely sharp spectral lines in infrared and
visible regions. Extremely weak interaction in the solid makes the linewidths more than one order of
magnitude sharper than those in the gas phase. High-spectral purity allows us to observe not only the
rotational branches, but also fine spectral structures originating in subtle interaction in the condensed
phase. By developing a technique of doping molecules in solid hydrogen, we have successfully
applied high-resolution spectroscopic technique to molecules in solid hydrogen and obtained
information on molecular interaction and chemical dynamics of molecules at very low temperatures.
Especially, we have obtained detailed information on the vibrational phase relaxation at extremely
low temperatures, the nuclear spin conversion of molecules in quantum crystals, and the nuclear spin
conservation rule in chemical reactions.

For example, by virtue of the free rotation of the molecules, rotation-vibration transitions of
the molecules in solid parahydrogen gave us quantitative and detailed information on the nuclear
spin modification during the reactions. It has been discussed that the memory of nuclear spin is
conserved even in chemical processes where particle rearrangements occur. Despite the importance
of the conservation rule in various fields, few experimental studies have been reported so far on the
quantitative analysis of the nuclear spin modification during chemical reactions. We have studied
nuclear spin conservation in various reaction systems which take place in solid parahydrogen. The
results show a clear indication of the conservation of nuclear spin modification in the chemical
reaction of CHz + H2 = CHa.

(2) Development of a technique of doping molecules in solid He: Solid He shows prominent
quantum features as a quantum crystal. Molecules isolated in solid He are expected to show narrower
spectral linewdith than that in solid hydrogen. High-resolution spectroscopy in soild He will allow us
to investigate not only the properties of molecules at low temperatures, but also properties of quantum
crystal otherwise difficult to obtain. Despite many challenges, however, over several decades, nobody
has succeeded in doping molecules in solid He. We are trying to dope molecules in solid He by
spraying molecule/He mixture gas onto a surface of solid He. So far we could isolate a microcluster
of molecules in solid He. We are now trying to find condition for the isolation of molecules in solid
He.



(3) Development of a new technique of making cold molecules in the gas phase: Development of
laser cooling technique allows us to make cold atoms down to nK regime. On the contrary, making cold
molecules in the gas phase is still difficult because the laser cooling technique cannot be applied due to the
existence of vibrational and rotational degrees of freedom that atoms do not have. We are trying to make cold
molecules in the gas phase by combining techniques of buffer gas cooling, Stark loading, and laser cooling.
By applying high electric field, we could selectively load molecules whose translational energy is below 1 K.
We are now developing a technique of laser cooling of molecules starting from these precooled molecules.

(4) Observation of molecules in interstellar space: It has been known that various molecules exist
abundantly in interstellar space. However, the mechanism of the production of molecules under such
extreme condition is yet to be known. Based of the observation of molecules by radio-telescopes, we
are investigating chemical evolution of molecules in interstellar space. We have analyzed observed
data on negative ions over a few years, and derived the upper limit of negative ions in dense molecular
clouds. We also found that ortho-para population ratio of cyclic-CsH: is correlated to the chemical
evolution of molecular clouds. From the analysis of a chemical model, we concluded that the
correlation is well interpreted by the conservation of nuclear spin conservation in chemical reactions.
Since cyclic- CsHz has been observed in various clouds, we proposed that the nuclear spin ratio of
cyclic- C3H: is a useful means to measure chemical age of molecular clouds.
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